1,561 research outputs found

    Cancellation of energy-divergences and renormalizability in Coulomb gauge QCD within the Lagrangian formalism

    Get PDF
    In Coulomb gauge QCD in the Lagrangian formalism, energy divergences arise in individual diagrams. We give a proof on cancellation of these divergences to all orders of perturbation theory without obstructing the algebraic renormalizability of the theory.Comment: 13 pages, 7 figure

    Continuous deformations of the Grover walk preserving localization

    Full text link
    The three-state Grover walk on a line exhibits the localization effect characterized by a non-vanishing probability of the particle to stay at the origin. We present two continuous deformations of the Grover walk which preserve its localization nature. The resulting quantum walks differ in the rate at which they spread through the lattice. The velocities of the left and right-traveling probability peaks are given by the maximum of the group velocity. We find the explicit form of peak velocities in dependence on the coin parameter. Our results show that localization of the quantum walk is not a singular property of an isolated coin operator but can be found for entire families of coins

    Critical behavior for mixed site-bond directed percolation

    Full text link
    We study mixed site-bond directed percolation on 2D and 3D lattices by using time-dependent simulations. Our results are compared with rigorous bounds recently obtained by Liggett and by Katori and Tsukahara. The critical fractions psitecp_{site}^c and pbondcp_{bond}^c of sites and bonds are extremely well approximated by a relationship reported earlier for isotropic percolation, (logpsitec/logpsitec+logpbondc/logpbondc=1)(\log p_{site}^c/\log p_{site}^{c^*}+\log p_{bond}^c/\log p_{bond}^{c^*} = 1) , where psitecp_{site}^{c^*} and pbondcp_{bond}^{c^*} are the critical fractions in pure site and bond directed percolation.Comment: 10 pages, figures available on request from [email protected]

    Many-spinon states and the secret significance of Young tableaux

    Full text link
    We establish a one-to-one correspondence between the Young tableaux classifying the total spin representations of N spins and the exact eigenstates of the the Haldane-Shastry model for a chain with N sites classified by the total spins and the fractionally spaced single-particle momenta of the spinons.Comment: 4 pages, 3 figure

    Limit Theorem for Continuous-Time Quantum Walk on the Line

    Full text link
    Concerning a discrete-time quantum walk X^{(d)}_t with a symmetric distribution on the line, whose evolution is described by the Hadamard transformation, it was proved by the author that the following weak limit theorem holds: X^{(d)}_t /t \to dx / \pi (1-x^2) \sqrt{1 - 2 x^2} as t \to \infty. The present paper shows that a similar type of weak limit theorems is satisfied for a {\it continuous-time} quantum walk X^{(c)}_t on the line as follows: X^{(c)}_t /t \to dx / \pi \sqrt{1 - x^2} as t \to \infty. These results for quantum walks form a striking contrast to the central limit theorem for symmetric discrete- and continuous-time classical random walks: Y_{t}/ \sqrt{t} \to e^{-x^2/2} dx / \sqrt{2 \pi} as t \to \infty. The work deals also with issue of the relationship between discrete and continuous-time quantum walks. This topic, subject of a long debate in the previous literature, is treated within the formalism of matrix representation and the limit distributions are exhaustively compared in the two cases.Comment: 15 pages, title correcte

    Estimation of the order parameter exponent of critical cellular automata using the enhanced coherent anomaly method.

    Full text link
    The stochastic cellular automaton of Rule 18 defined by Wolfram [Rev. Mod. Phys. 55 601 (1983)] has been investigated by the enhanced coherent anomaly method. Reliable estimate was found for the β\beta critical exponent, based on moderate sized (n7n \le 7) clusters.Comment: 6 pages, RevTeX file, figure available from [email protected]
    corecore